Competition between retinal ganglion axons for targets under the servomechanism model explains abnormal retinocollicular projection of Eph receptor-overexpressing or ephrin-lacking mice.

نویسنده

  • Hisao Honda
چکیده

Topographic mapping of retinal ganglion axons to the midbrain is computed by the servomechanism model, which is based on the experimental result of cell attachment. Cells expressing a certain level of Eph proteins (receptors for ephrin ligands) optimally attach to a surface that expresses a specific level of ephrin ligand density. The retina has an increasing nasal-to-temporal gradient of Eph receptor density, and the optic tectum/superior colliculus has an increasing rostral-to-caudal gradient of membrane-bound ephrin ligand. An axon from the retina has an identification tag of a certain level of Eph receptor density depending on its retinal position and adheres to the site on the tectum/superior colliculus expressing ephrin ligands at a critical ligand density level. Quantitatively, a retinal axon has a receptor density (R) that is determined by its retinal position, and the axon terminal is induced to adhere to the tectal site of ligand density (L = S/R), where S is a constant. Consequently, the servomechanism model defines positions of axon terminals on the midbrain. Abnormal topographic maps are reported in a knock-in experiment with elevated density of Eph receptors and a knock-out experiment lacking ephrin ligands using gene-targeting technology. By adding competition between axon terminals for target sites to the servomechanism model, the abnormal maps became easy to understand. Furthermore, the servomechanism-competition model allowed conjecture of the gradient shapes of receptor and ligand densities and estimation of the capacity of the midbrain surface to accept retinal axon terminals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of mouse EphA knockins and knockouts suggests that retinal axons programme target cells to form ordered retinotopic maps.

I present a novel analysis of abnormal retinocollicular maps in mice in which the distribution of EphA receptors over the retina has been modified by knockin and/or knockout of these receptor types. My analysis shows that in all these cases, whereas the maps themselves are discontinuous, the graded distribution of EphA over the nasotemporal axis of the retina is recreated within the pattern of ...

متن کامل

Graded expression patterns of ephrin-As in the superior colliculus after lesion of the adult mouse optic nerve

The idea has been put forward that molecules and mechanisms acting during development are re-used during regeneration in the adult, for example in response to traumatic injury in order to re-establish the functional integrity of neuronal circuits. Members of the Eph family of receptor tyrosine kinases and their 'ligands', the ephrins, play a prominent role during development of the retinocollic...

متن کامل

Competition is a driving force in topographic mapping.

Topographic maps are the primary means of relaying spatial information in the brain. Understanding the mechanisms by which they form has been a goal of experimental and theoretical neuroscientists for decades. The projection of the retina to the superior colliculus (SC)/tectum has been an important model used to show that graded molecular cues and patterned retinal activity are required for top...

متن کامل

Retinotopic Map Refinement Requires Spontaneous Retinal Waves during a Brief Critical Period of Development

During retinocollicular map development, spontaneous waves of action potentials spread across the retina, correlating activity among neighboring retinal ganglion cells (RGCs). To address the role of retinal waves in topographic map development, we examined wave dynamics and retinocollicular projections in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. beta2(-/-) mice la...

متن کامل

Differential Roles for EphA and EphB Signaling in Segregation and Patterning of Central Vestibulocochlear Nerve Projections

Auditory and vestibular afferents enter the brainstem through the VIIIth cranial nerve and find targets in distinct brain regions. We previously reported that the axon guidance molecules EphA4 and EphB2 have largely complementary expression patterns in the developing avian VIIIth nerve. Here, we tested whether inhibition of Eph signaling alters central targeting of VIIIth nerve axons. We first ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 23 32  شماره 

صفحات  -

تاریخ انتشار 2003